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An account is given of the use of Gaussian quadrature product formulae in the evaluation of 
certain six-dimensional, two-centre integrals involving one-electron Green's functions. These 
integrals occur in a new molecular variational principle recently proposed by Hall, Hyslop and 
Rees [1] from which an approximate energy may be derived which can be shown to be at least as good 
as that obtained from the Rayleigh-Ritz principle. Reductions in computing time are realized by 
removing certain singularities using a subtraction technique and also by using an empirically 
determined Richardson-type extrapolation formula. 
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1. Introduction 

In a recent paper  Hall, Hys lop  and Rees [1] proposed  a variation principle 
for molecular  energies and applied it to the calculation of  an upper  bound  for the 
g round  state energy of  the H f  molecule. The six-dimensional Green's  function 
integrals involved were evaluated by employing a semi-analytical technique in 
which a Fourier  t ransform representat ion of  the Green's  function enabled the 
integrals to be reduced to a single quadra ture  in the simplest cases considered 
and to a triple quadra ture  in more  complicated cases. However,  generalization of  
this me thod  is not  s t raightforward and indeed as pointed out in [-t], some of the 
addit ional  integrals required in an alternative functional cannot  be evaluated 
by the techniques employed on the original functional. 

The functional conta ined in the original principle was derived using the 
usual Born-Oppenhe imer  approximat ion  that  the nuclear and electronic co- 
ordinates could be completely separated, whereas the alternative functional 
p roposed  did not  assume this separation. Since a direct compar ison of these 
functionals is of interest and also since an integrat ion routine which is more  
readily generalized is necessary the possibility of direct numerical  evaluation of 
the integrals is considered. 

2. Formulation of the Integrals 

On int roducing a class ~(x) of scaled trial functions, where the scaled 
variables are denoted by x with x = kr when the electronic energy is given by 

*This paper was presented during the session on numerical integration methods for molecules 
of the 1970 Quantum Theory Conference in Nottingham. It has been revised in the light of the 
interesting discussion which followed. 
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E = - k 2 / 2 ,  the functional used in [1] may be written as 

k = .(SW*(x0 V(xl )  G(xl ,  x2) V(x2) lp(x2) dxldx2/5~P*(X) V(x)  ~p(x) dx .  (1) 

G (xl, x2) = - exp ( -  x12)/(2rc x12) is the scaled Green's function with 
x12 = Ix1 - x21 and V(x)  is the scaled electronic potential energy corresponding to 

V (r) = - ( f ir .  + 1/rb) (2) 

where r a and r b are the distances between the electron and protons a and b, whose 
separation is R. The total energy is then given by 

W = - ke/2 + 1/R (3) 

The alternative functional may be written as 

k' = ~.[W*(x O V'(x O G(xl ,  x2) V'(x2) ~P(x2) dx,dx2/.f~p*(x) V'(x) ~p(x) dx (4) 

in which V'(x) is the scaled total potential energy corresponding to 

V'(r) = - (1/r a + 1/rb) + 1/R (5) 

and the total energy corresponding to this functional is 

W' = - k' 2/2 (6) 

The values of k are then obtained as functions of the independent 
variable Q = k R  from equation (1) with corresponding internuclear separation 
o/k. Correspondingly k' is given as a function of 6' = k'R by equation (4) at the 
internuclear separation o'/k' and hence energy curves may be obtained and 
compared. 

Two centre elliptic coordinates (2, #, ~b) are used where 

)c = (r a --k rb)/R, # = (r. -- rb)/R (7) 

and q5 is the azimuthal angle about the internuclear axis. By way of illustration 
the trial function used is the simple united atom approximation 

~p(x) = exp ( -  c2) (8) 

where c is a variable parameter�9 This function may be regarded as being 
already scaled since it involves only the ratio of distances. 

On writing the functionals k and k' as I / J  and 1'/,1' respectively it is easily 
seen that the normalization integrals J and J'  are given by 

J(o, c )= - i r e  (0/c)2(1 + 2c) e x p ( -  2c) (9a) 
and 

J'(O', c) = -~x4zc (OZ/c 3) (20c 2 + 6 c -  3) e x p ( -  2c) (9b) 

and that the main integrals I and I' may be written as 

and 
I= I _4~'. -i - - 4 ~  J"~12 exp(-x12)exp[-c(21 +)'2)]) '1)~2d~ldJ'zd#1d#2 d49 (10a) 

I' = _aOl ,4ejx12-a exp ( -  x12) exp [ -  c(21 + 22)] [21 - (2 2 - #2)/4] (10b) 

�9 [22 _ (,~2 _ p2)/43 d21d22a#1d#2dc ~ 
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The scaled distance x12 is given by 

4X22 /Q2  _-- ()~2 _ 1) (1 - -  # 2 )  q_ (~22 _ 1) (1 - -  #22) + ()~1#1 - -  ")L2#2) 2 

-2 I)(1- 1)(1- #22)] / cos 
(11) 

where q5 = q51 -~b 2 is the difference in azimuthal angles. 
In the I' integral, therefore, Q is replaced by p' and the 2122 term in I is 
replaced by 

[-21 - (2 2 - #2)/4] [22 -(222 - #22)/4] (12) 

3. Numerical Integration Procedure 

The formula used for the integrations is a five-dimensional Gaussian 
product formula of the type given by Stroud and Secrest [--23. For the # integra- 
tions the basic result is 

+1 N 
f (#) d#= .~ Ao(i) f[,xo(i)] (13) 

--i z=l 

where xo(i) is the i th grid-point and Ao(i ) the corresponding weight for N-point 
Gauss-Legendre quadrature. In the case of the 2 integrations the result is 

N 
f (2) exp ( - c2) d2 = c - l e x p  ( - c) ~ AL(i ) f [ 1 + xL(i)/c] (14) 

1 i = 1  

in which xL(i) and AL(/) are the grid-points and weights for N-point Gauss- 
Laguerre quadrature. The quantities x~ (i), Ao(i ), xL(i) and AL(/) are extensively 
tabulated by Stroud and Secrest. The azimuthal integration is carried out by 
means of the Chebyshev-type result 

2re 2~ 
~ f  cos (15) .f f (cos qS) dq~ = N - i  2N 

o 

which is also referred to by Kopal [3] as the N-point Gauss-Mehler quadrature 
formula. 

The main difficulty associated with the use of Gaussian quadrature formulae 
in the evaluation of molecular integrals of the type I or I' is the extremely slow 
convergence with increasing N because of the xl-21 singularity. Extensive 
numerical tests were carried out using the technique of Boys and Rajagopal [-3] 
for the removal of the singularity, but, even when various modifications were 
used, the convergence was still found to be exceedingly slow. It is proposed 
therefore to consider numerically the integrals S and S' rather than I and I' 
where 

S = ~ 1  _4 . ]~12  f"  - 1 [,1 - -  exp ( -  X12)" ] exp [ , -  c(21 + 22) ] 2aZ2dAld22d#1d#2d ~9 (16) 

with a similar expression for S' with Q replaced by ~' and 2122 replaced by (12). 
The singularity of x l z = 0  is now removable and numerical tests confirm 
that a considerable improvement in convergence is realized when an NS-point 
Gaussian formula is used. 
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It is necessary then to evaluate the complementary integral 

h I -- 4 ~ " [ l = Ce Jx12 exp [ -  c (21 + 22)] 2122d21d22d#ldl~2d~b (17) 

with a corresponding expression for A', using (12). These integrals may be 
treated analytically using the Neumann expression of x~ -1 in terms of (2, #, q~) 
as quoted, for example, by Harris and Michels [4]. The analysis is similar to that 
used by Sugiura [5] in his classical evaluation of the Heitler-London hydrogen 
molecule integrals and analytical expressions for A and A' are readily obtained 
in terms of the subsiduary integrals 

or3 

L,(c) =S 2"exp ( -  c2) log(2 + 1)/(2 - 1) d2, (18) 
1 

n ranging from 0 to 4. The values of L,(c) are obtained by successive 
differentiations of the result 

Lo(c ) = c-  1 [(7 + log 2c) e x p ( -  c) + exp(c) El (2e)] (19) 

where 7=0.577215... is Euler's constant and El(z) is the exponential integral 
oo 

El(z) = t t -  %xp ( -  zt) dt (20) 

�9 as defined by Abramowitz and Stegun [6]. 
The integrals 1 and I' are then given by subtraction to be I = S - A  and 

I ' =  S' - A' (21) 
once S and S' have been evaluated numerically and A and A' evaluated 
analytically. 

4. Improvement in Convergence 

Denoting the value of S obtained from the NS-point Gauss formula by S N, 
numerical tests indicate that the convergence of the required {SN} is rapidly 
approaching geometric, so that the Aitken 62-extrapolation procedure may be 
used to speed up the process, Noble [7]. In fact, using a combination of the 
Richardson and Aitken extrapolation techniques as outlined in [7j it appears 
that a formula of the form 

S -~ SN+ 1 -- a (SN -- SN+ 1) (22) 

is valid for large N, certainly for N greater than 8. 
In order to reduce the value of N an empirical formula of the form 

S - b [$5 - a (S 4 - Ss)] (23) 

was investigated and extensive numerical tests indicated that an optimum 
value for the constant a could be found which was such that the correction 
factor b was extremely slowly varying with ~ and the corresponding value of c 
in the region of its optimum value, as prescribed by section 5. Some representa- 
tive values demonstrating the validity of this formula are shown in the 
following table for both S and S'. 
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Table 1. Variation of the correction factor b in the extrapolation formula 
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Q c s integrals S' integrals 
a=0.8 a=0.9 

1.0 0.48 0.99843 0~99777 
2.0 0.93 0.99876 0.99891 
3.0 1.36 0.99882 0.99902 
4.0 1.80 0.99880 0.99902 
5.0 2.23 0.99869 0.99896 
6.0 2.67 0.99854 '0.99887 

Further numerical tests on extrapolation formula (23) indicate that both S 
and S' may be obtained to an accuracy of better than 3 parts in 10 4 for values 
of 0 (or 0') greater than 1.0 with a maximum value of N = 5, that is, 3125 Gauss- 
points for the five-dimensional integrals. For  0 < 1.0, it is necessary to in- 
crease N, but in this case since the united a tom limit is being rapidly approached, 
the resulting electronic energy values are very close to the exact results, of 
Dalgarno and Poots [8]. Indeed, in this region the behaviour of the total 
potential energy curve is dominated by the 1/R nuclear repulsion term. 

5. Optimization Routine 

The technique is similar to that used in [1]. Thus, for a given Q the func- 
tional k is optimized with respect to the parameter  c according to 

(Ok/~c)o = 0 (24) 

using a simple one-dimensional research routine based on extrapolation 
formula (23) coupled with analytical evaluation of A and A'. Various checks on 
accuracy are carried out involving increases in the number  of Gauss points. 
This yields opt imum values kop t and Cop t with corresponding R values given by 
Q/kop t and Wgiven by 

Wopt(~) = -- k2pt/2 + 1/R (25) 

Similarly the functional k' is optimized according to 

(Ok'/Oc)o, = 0 (26) 

and yields k'opt, Cop t and correspondingly R ' =  e'/k'opt and 

Wopt(R ) = ,2 ' ' -- kopt/2 (27) 

The equilibrium separation Ro is obtained by optimizing W(o,c) or 
W'(O', c) as in [1] using the direct search routine of Rosenbrock [9], making use 
once again of the empirical extrapolation formula (23) to reduce computing 
time. 

6. Discussion 

The main limitation on accuracy is the numerical evaluation of the six- 
dimensional integrals S and S'. The use of the empirically determined extra- 
polation formula enables a maximum error of 3 x 10 -4 to be realized with a 
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total of 3125 Gauss-points in the determination of these integrals. Cancellation 
effects in evaluating ( S -  A) and ( S ' - A ' )  and also between -k2/2 and 1/R may 
increase the error to a maximum of 3 x 10 -3 in the total energies. The energy 
curves E(R) and E'(R') and W(R) and W'(R') are found to be indistinguishable 
to this accuracy and it is concluded that the Born-Oppenheimer separation in 
the functionals is valid within the limits of the accuracy of the present calculations. 
As an illustration, the optimum values of W= - 0 . 5 9 0  at R = 1.912 as compared 
with W ' = -  0.593 at R ' =  1.909 may be quoted and compared with the exact 
result of -0 .603  at 2.00. 

References 

1. Hall, G.G., Hyslop, J., Rees, D.: Intern. J. Quantum Chem. 4, 5 (1970) 
2. Stroud, A. H., Secrest, D.: Gaussian quadrature formulas. Englewood Cliffs, New Jersey: Prentice- 

Hall, 1966 
3. Boys, S.F., Rajagopal, P.: Adv. Quantum Chem. 2, 1 (1965) 
4. Harris, F.E., Michels, H.H.: Adv. Chem. Phy. 13, 205 (1967) 
5. Sugiura, Y.: Z. Physik 45, 484 (1927) 
6. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. New York: Dover Publica- 

tions 0965) 
7. Noble, B.: Numerical methods. Edinburgh: Oliver and Boyd (1964) 
8. Dalgarno, A., Poots, G.: Proc. Phys. Soc. (London) A 67, 343 (1954) 
9. Rosenbrock, H.H.: Computer Journal 3, 175 (1960) 

Dr. J. Hyslop 
Department of Mathematics 
University of Technology 
Loughsborough, England 


